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Large language models (LLMs) have shown great success in code generation. LLMs take as the input a prompt
and output the code. How to make prompts (i.e., Prompting Techniques) is a key question. Existing prompting
techniques are designed for natural language generation and have low accuracy in code generation.

In this article, we propose a new prompting technique named AceCoder. Our motivation is that code
generationmeets two unique challenges (i.e., requirement understanding and code implementation). AceCoder
contains two novel mechanisms (i.e., guided code generation and example retrieval) to solve these challenges.
¶ Guided code generation asks LLMs first to analyze requirements and output an intermediate preliminary
(e.g., test cases). The preliminary clarifies requirements and tells LLMs “what to write.” · Example retrieval
selects similar programs as examples in prompts, which provide lots of relevant content (e.g., algorithms, APIs)
and teach LLMs “how to write.” We apply AceCoder to four LLMs (e.g., GPT-3.5, CodeGeeX) and evaluate it
on three public benchmarks using the Pass@: . Results show that AceCoder can significantly improve the
performance of LLMs on code generation. In terms of Pass@1, AceCoder outperforms the SOTA baseline by
up to 56.4% in MBPP, 70.7% in MBJP, and 88.4% in MBJSP. AceCoder is effective in LLMs with different sizes
(i.e., 6B–13B) and different languages (i.e., Python, Java, and JavaScript). Human evaluation shows human
developers prefer programs from AceCoder.
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1 Introduction
Code generation aims to automatically generate the source code based on a natural language
requirement. Recently, large language models (LLMs) have achieved state-of-the-art (SOTA)
results on code generation [12, 13, 25, 30, 51]. LLMs do not require fine-tuning and take a prompt
as input. A prompt consists of several examples (e.g., <requirement, code pairs>) and a new
requirement. LLMs learn code generation from examples and analogously generate code for the
new requirement.

The performance of In-Context Learning strongly relies on the prompt surface [50]. How to
design prompts (i.e., prompting techniques) is still an open question. Existing prompting techniques
(e.g., few-shot prompting [9] and chain-of-thought (CoT) prompting [48]) are designed for
natural language generation and have low accuracy in code generation. For example, Codex with
few-shot prompting only achieves 37.2% Pass@11 on a real-world benchmark—HumanEval [12].
Thus, exploring more advanced prompting techniques for code generation is necessary.

In this article, we propose a novel prompting technique specialized in code generation, named
AceCoder. It significantly improves the performance of LLMs in code generation. Our motivation
is that code generation aims to build a mapping from natural language requirements to source
code. There are two unique challenges in this mapping, i.e., requirement understanding and code
implementation. AceCoder proposes two novel mechanisms to alleviate two challenges. The details
of AceCoder are shown as follows.

Challenge 1: Requirement Understanding. Understanding requirements is the starting point of
code generation. In real-world programming problems, the requirement may be a brief purpose
without specific details. For example, a requirement from a real-world benchmark—Mostly Basic
Programming Problems (MBPP) [7] is write a function to check if the triangle is
isosceles or not. Before writing code, we need to analyze the requirement and determine
specific details, e.g., input–output formats, and possible exceptions.

Novelty 1: Guided Code Generation. To alleviate this challenge, we propose guided code generation.
Our motivation is that human developers often use some software artifacts to assist in analyzing
requirements. For example, in test-driven development [8], developers clarify requirements by
designing test cases. It forces developers to think about details of requirements, e.g., input–output
formats and boundary values. These test cases exactly define the requirement and tell developers
what to write.

To implement the above process, we design a special prompt consisting of triple examples
(i.e.,<requirement, preliminary, code>). A preliminary is a specific software artifact (e.g., test cases,
APIs) for clarifying the requirement. Given a new requirement, based on the prompt, LLMs first
output a preliminary and then generate code based on the preliminary. We illustrate the guided
code generation in Section 2 and describe the details in Section 3.3.

Challenge 2: Code Implementation. After understanding the requirements, implementing the
source code using a programming language is challenging. It requires LLMs to master related

1Pass@: (e.g., : = 1) is a widely used evaluation metric in code generation. It denotes the percentage of programs passing
all test cases within models’ outputs. The detailed definition of Pass@: can be found in Section 4.2.
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grammar, algorithms, and libraries. Even for human developers, it is difficult to write an exactly
correct program from scratch.

Novelty 2: Example Retrieval. To solve the above challenge, we propose example retrieval. It
is inspired by the human developers’ code reuse. In real-world scenarios, given a requirement,
developers often refer to programs with similar requirements. They learn programming skills (e.g.,
APIs) or directly reuse relevant content from similar programs [23, 29].

Specifically, we use a retriever to search for programs with similar requirements. Considering
the maximum input length of LLMs is limited (e.g., 1,024 tokens), the number of examples in a
prompt is also limited, such as three examples. Thus, we further design a selector to select a set
of programs from retrieved results as examples. The selector will filter out redundant programs
and pick informative examples. Then, examples are inserted into prompts and teach LLMs how
to implement code. We illustrate the example retrieval in Section 2 and describe the details in
Section 3.2.

In conclusion, given a requirement, AceCoder generates a program in three steps:

—Example retrieval. It uses a retriever and a selector to search for examples, i.e., <requirement,
code> pairs.

—Prompt construction. It uses an analyzer to convert example into <requirement, preliminary,
code> triples. Then, it concatenates examples with the input requirement together to construct
a prompt.

—Code generation. It feeds the prompt into LLMs. By learning from examples, LLMs output an
intermediate preliminary and then generate the source code.

We apply AceCoder to four representative LLMs, i.e., GPT-3.5 [32], CodeGeeX [51], CodeGen [30],
and InCoder [13]. We conduct extensive experiments on three popular code generation benchmarks,
i.e., MBPP [7], Mostly Basic Java Problems (MBJP) [6], and Mostly Basic JavaScript Problems
(MBJSP) [6]. We employ Pass@: (: = 1, 3, 5) to measure the performance of different approaches.
We obtain some findings from experimental results. ¶ AceCoder significantly outperforms existing
prompting techniques. In terms of Pass@1, AceCoder outperforms the SOTA baseline—few-shot
prompting by up to 56.4% in MBPP, 70.7% in MBJP, and 88.4% in MBJSP. The improvements prove
the superiority of AceCoder in code generation. · AceCoder substantially outperforms retrieval-
based models. In terms of Pass@1, AceCoder outperforms the SOTA retrieval-based baseline by
up to 13.1% in MBPP, 23.44% in MBJP, and 15.8% in MBJSP. ¸ AceCoder is effective in LLMs
of different sizes. We apply AceCoder to three LLMs, which scale from 6B to 13B. In terms of
Pass@1, AceCoder improves CodeGeeX-13B by up to 88.4%, CodeGen-6B by up to 65.5%, and
InCoder-6B by up to 57.5%. ¹ Human evaluation shows that human developers prefer programs
generated by AceCoder. Results show that AceCoder outperforms the SOTA baseline in multiple
aspects, including correctness, code smell, and maintainability. º We explore the contributions of
different modules and discuss different designs for AceCoder. Results show that three modules are
all necessary and our designs for three modules are superior to multiple alternates.

We summarize our contributions in this paper as follows:

—We propose a novel prompting technique named AceCoder, for improving the performance
of LLMs in code generation.

—AceCoder contains two novel techniques (i.e., guided code generation and example retrieval)
to alleviate two challenges (i.e., requirement understanding and code implementation) in code
generation, respectively.

—We apply AceCoder in three LLMs and conduct extensive experiments on three public
benchmarks. Qualitative and quantitative experiments show that AceCoder significantly
outperforms the SOTA baselines (e.g., CoT prompting, few-shot prompting).
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Fig. 1. A motivating example of guided code generation.

Article Organization. Section 2 shows some examples to illustrate the motivations of AceCoder.
Section 3 presents the details of our AceCoder. In Section 4 and Section 5, we conduct a large-scale
study and evaluate the effectiveness of AceCoder. Section 6 discusses the differences between
AceCoder and related works. Section 7 surveys related works about prompting techniques in code
generation. Finally, Section 8 summarizes this article and points out some future directions.

2 Motivating Examples
In this section, we explain our motivations by some real cases.

Requirement Understanding → Guided Code Generation. Figure 1(a) and (b) show a requirement
from a real-world benchmark [7] and its unit test for evaluation, respectively. We select Codex
as the base model. Figure 1(c) shows a program generated by few-shot prompting. The program
fails, as it ignores some essential scenarios in the requirement, such as ch appearing multiple times
in s. It shows that comprehensively understanding the requirements is crucial to writing correct
programs.

Thus, we propose guided code generation, which asks LLMs first to analyze the requirement
and then generate code. Figure 1(d) shows a program generated by AceCoder. We consider test
cases to be the intermediate preliminary. We can see that the generated test cases cover multiple
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Fig. 2. A motivating example of example retrieval.

scenarios, e.g., boundary inputs (“test,” “e”). They further clarify the requirement and benefit
the following code implementation. Based on the test cases, AceCoder generates a correct program,
which considers three scenarios and gives solutions, respectively.The example shows that our guided
code generation can help LLMs to analyze requirements and improve the functional correctness of
code.

Code Implementation→ Example Retrieval. After understanding the input requirement, imple-
menting the code is challenging. It requires LLMs to use various algorithms or libraries. Figure 2(a)
and (b) show a requirement from a real-world benchmark [7] and its unit test for evaluation,
respectively. Figure 2(c) shows a failed program generated by few-shot prompting. The requirement
is to find sequences of lowercase letters joined with an underscore (e.g., a_b_c). The failed program
simply checks whether the sequence contains lowercase letters and underscores rather than joining.
We suspect that the model does not know how to judge a string containing lowercase letters joined
with an underscore.

To alleviate the above problem, we propose example retrieval. Our motivation is that human
developers often learn programming skills from similar programs. Figure 2(d) shows a few programs
with similar requirements. The retrieval metric is the BM25 score. We sort these programs in the
descending order of BM25 scores. We can see that similar programs contain lots of relevant content
(e.g., re.search), which benefits code implementation. Thus, we design a retriever to search for
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Fig. 3. An overview of AceCoder. Given a requirement, it selects examples from similar programs and
constructs a prompt. LLMs first output an intermediate preliminary and then generate the source code. G , ~,
and C denote requirements, programs, and intermediate preliminaries, respectively.

similar programs as examples in prompts. We expect LLMs can learn from similar programs how
to implement new programs.

Since the maximum input length of LLMs is usually limited (e.g., 1,024 tokens), the number of
examples in a prompt is limited. Thus, we need to select a few programs from retrieved results as
examples. A straightforward idea is to pick programs with the highest similarities. However, since
each retrieval is independent, we find that retrieved results may contain redundant programs. For
example, Program-1$2$3 in Figure 2(d) are redundant because they all present an API re.search
that teaches how to search a pattern in the text. Program-4 contains a relevant regular expression,
which tells how to design a pattern. Suppose the number of examples is 2. The examples will contain
redundant programs (i.e., Program-1 and 2) and miss more informative Program-4.

Thus, we design a selector to filter out redundant programs in retrieved results. Suppose the
number of examples is 2. In Figure 2(d), our selector will select Program-1 and Program-4 as
examples. Figure 2(e) shows a program generated by AceCoder. It successfully learns how to
write regular expressions from Program-4 and learns how to use re.search to find patterns from
Program-1.

3 AceCoder
In this section, we propose a novel prompting technique for code generation, named AceCoder.
We present an overview of AceCoder and then describe its details.

3.1 An Overview
Code generation aims to generate the source code ~ based on a natural language requirement G .
AceCoder leverages LLMs to generate programs via prompting. Figure 3 shows an overview of
AceCoder during inference. Given an input requirement GC4BC , AceCoder generates code in three
steps.

—Example Retrieval. It uses a retriever and a selector to select : similar <requirement, code>
pairs ({G8 , ~8 }:8=1) from a retrieval corpus as examples.

—Prompt Construction. It employs an analyzer to convert examples into <requirement, pre-
liminary, code> triples ({G8 , 08 , ~8 }:8=1). A preliminary is a software artifact for clarifying the
requirement, such as test cases. The examples are concatenated with the input requirement to
construct a prompt.

—Code Generation. The prompt is fed into LLMs. By learning from examples, LLMs output an
intermediate preliminary and then generate the code.

where G8 , ~8 , 08 denote the requirement, the code, and the preliminary in 8th example, respectively.
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Fig. 4. A requirement and its similar programs.

3.2 Example Retrieval
As shown in Figure 3, the first step has two goals: (1) retrieve similar programs and (2) select a
few examples from retrieved programs. We design a retriever and a selector to achieve these goals,
respectively. The details of the two modules are shown as follows.

3.2.1 Retriever. Similar programs often have similar natural language requirements [AceCoder,
15, 23]. There, we take the input requirement as a query to search for similar requirements in
a retrieval corpus. In this article, we consider the training data in experimental datasets as the
retrieval corpus. Then, we extract the corresponding programs as similar programs.

Specifically, we leverage an open-source search engine named Lucene [3] to build our retriever
and use the training data as a retrieval corpus. We employ the BM25 score [39] as the retrieval
metric, which is widely used in previous studies [22, 46]. The BM25 score is a bag-of-words retrieval
function and is used to estimate the lexical-level similarity of two sentences. The more similar the
two sentences are, the higher the value of BM25 scores. In this article, the retriever outputs top-<
similar programs based on the BM25 score.

The reason for choosing BM25+Lucene is that they can achieve good retrieval accuracy and have
low complexity. Considering that the retrieval corpus is often large-scale, a lightweight retriever is
closer to practical applications. In Section 5, we also explore other designs for the retriever and
compare them to our design.

3.2.2 Selector. We can obtain top-< similar programs from the retriever. However, the maximum
input length of LLMs (e.g., 1,024 tokens) and the inference budget are often limited. It leads that
the number of examples (i.e., :) in a prompt is also limited (e.g., three examples). It is necessary to
further select : programs from retrieved results as examples.

A straightforward idea is to pick top-: similar programs as examples. However, as the programs
are scored independently, we find that retrieved results may contain redundant programs. Figure 4
shows a requirement and its similar programs. Similar programs are ranked by the BM25 score.
We can see that top-3 programs are redundant, as all of them use an API (i.e., re.search) to find
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Algorithm 1: The Algorithm of Our Selector
Inputs:

Input requirement GC4BC , similar programs {(G8 , ~8 )}<8=1;
The number of examples :, : <=<, decay factor _.

Outputs:
Selected examples ), {(G8 , ~8 )}:8=1.

1: ) ← Empty Ordered List
2: ( ← Extract_ngrams_with_count(GC4BC )
3: for 8 in {1, · · · ,<} do
4: & [8] ← Extract_ngrams_with_count(G8 )
5: end for
6: while ;4=() ) < : do
7: for 8 in {1, · · · ,<} do
8: (2>A4 [8] ← Ngram_overlap_score((,& [8])
9: end for

10: 9 ← argmax(Score)
11: ) .0??4=3 ((G 9 , ~ 9 ))
12: <0C2ℎ43_=6A0<B ← ( ∩& [ 9]
13: & [ 9] ← ∅
14: for 8 in {1, · · · ,<} do
15: for =6A0< ∈<0C2ℎ_=6A0<B do
16: ( [8] [=6A0<]× = _

17: end for
18: end for
19: end while
20: return )

sequences of a specific pattern. The Program-4’s requirement contains a relevant regex expression.
However, as Program-4 has fewer overlapping=-gramswith the input requirement, it has a relatively
low BM25 score. Obviously, directly selecting top-: (e.g., top-3) retrieved programs is unreasonable,
as it will introduce redundant programs and ignore more informative Program-4.

In this article, we design a selector, which can filter out redundant programs in retrieved results.
The algorithm of the selector is shown in Algorithm 1. We first extract all =-grams of the input
requirement and all similar requirements (lines 2–5). In this article, = is set to 4 by default. Then, we
calculate a recall-based ROUGE-= score between the input requirement and each similar requirement
using the following equations (lines 7–9).

'= =

∑
=_6A0<∈(∩& ( (=_6A0<)∑
=_6A0<∈( ( (=_6A0<)

(1)

(2>A4 = exp

(
1
=

∑
=

log('=)
)
. (2)

We get a similar requirement with the maximum score and add its corresponding program to
examples (lines 10–11). Then, the matched =-grams between the similar requirement and the input
requirement are decayed by a factor _. This process (lines 6–17) is repeated until the number of
examples reaches the upper bound. The motivation for the decay is to filter out redundant programs,
i.e., programs with the same matched =-grams. For example, in Figure 4, we first add Program-1 to
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Fig. 5. Examples of our prompt and an LLM’s output.

examples and then decay its matched =-grams (e.g., find sequences of). Subsequent programs
with the same matched =-grams (i.e., Program-2 and Program-3) are considered redundant and will
be ignored. Program-4 contains new matched =-grams (e.g., lowercase letters) and probably
contains new information. Thus, Program-4 will obtain a higher score and is added to the examples.

By the above process, our selector filters out redundant programs and selects : similar programs
as examples. In practice,< and: are small numbers, such as< = 50, = = 3.Thus, the time complexity
of our selector is acceptable.

3.3 Prompt Construction
The goal of this step is to construct a prompt. As stated in Section 1, our guided code generation
expects that LLMs can output an intermediate preliminary and then generate the final code. To
achieve this goal, we design a special prompt consisting of triple examples (i.e., <requirement,
preliminary, code>).

Specifically, we first use an analyzer to introduce preliminaries {C8 }:8=1 into selected examples
{G8 , ~8 }:8=1, obtaining triple examples {G8 , C8 , ~8 }:8=1.The preliminary is a software artifact for clarifying
requirements. Inspired by test-driven development [8], this article considers test cases as the
preliminary by default. We also explore other choices (e.g., APIs, method signature) in Section 5.
Then, we concatenate these triple examples with the input requirement to construct a prompt.

Figure 5(a) shows an example of our prompt. The prompt begins with several examples and ends
with a new requirement. [requirement], [test case], and [source code] are special tags that
mark different parts in a triple.

We assume that test cases of examples are available. We think this assumption is acceptable. The
reasons are two-fold. First, there are many public code generation datasets containing test cases,
e.g., MBPP [7] (474 samples), APPS [16] (5,000 samples), and CodeContest [25] (13,328 samples). We
can extract training data from these datasets and construct a retrieval corpus. Second, test-driven
software development is popular in real-world scenarios. We can mine software repositories from
open-source communities (e.g., GitHub [2]) and extract code snippets equipped with test cases.

3.4 Code Generation
In this step, we leverage an LLM to generate code based on the prompt. Following previous studies
[12, 13, 30, 51], we view the LLM as a black-box generator and use it to complete the prompt. By
learning from examples in the prompt, LLMs will first output a preliminary (e.g., test cases) and
then generate code based on the preliminary and the requirement.

Figure 5(b) shows an output of an LLM—CodeGeeX [51].We can see that CodeGeeX first generates
some test cases and then implements a Python function. The test cases provide lots of valuable
information (e.g., input–output formats, invalid inputs) and guide the subsequent code generation.
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Table 1. Statistics of the Datasets in Our Experiments

Statistics MBPP MBJP MBJSP

Language Python Java JavaScript

# Train 384 383 383
# Dev 90 90 90
# Test 500 493 493

Avg. tokens in requirement 16.50 16.71 16.53
Avg. tokens in code 92.68 247.79 100.75

4 Study Design
To assess AceCoder, we perform a large-scale study to answer six research questions. In this
section, we describe the details of our study, including datasets, evaluation metrics, baselines, and
base LLMs.

4.1 ResearchQuestions
Our study aims to answer the following research questions (RQs).

RQ1: How does AceCoder perform compared to existing prompting techniques? This RQ aims to
validate that AceCoder has higher accuracy than existing prompting techniques in code generation.
We apply AceCoder and baselines to three LLMs and measure their accuracy on three code
generation benchmarks. The evaluation metric is Pass@ .

RQ2: How does AceCoder perform compared to retrieval-based models? AceCoder retrieves
similar programs as examples in prompts. Some existing studies [19, 35] also introduce information
retrieval to augment code generation. In this RQ, we compare AceCoder to these retrieval-based
models. The evaluation metric is Pass@ .

RQ3: Do human developers prefer code generated by AceCoder? The ultimate goal of code genera-
tion is to assist human developers in writing code. In this RQ, we hire 10 developers (including
industry employees and academic researchers) to review the code generated by AceCoder and
baselines manually. We measure the quality of code in three aspects, including correctness, code
smell, and maintainability.

RQ4: What are the contributions of different modules in AceCoder? AceCoder contains three
modules, i.e., a retriever, a selector, and an analyzer. This RQ is designed to analyze the contributions
of three modules to the performance. We select a base model, gradually introduce three modules,
and observe the fluctuations in accuracy.

RQ5: What are the better designs for three modules? This RQ aims to validate the superiority of
our designs for three modules in AceCoder. Specifically, we explore multiple designs for three
modules and compare them to our designs.

4.2 Evaluation Datasets and Metrics
4.2.1 Datasets. We conduct experiments on three public code generation benchmarks, including

the MBPP in Python, MBJP in Java, and MBJSP in JavaScript. The statistics of the datasets are shown
in Table 1. The details of the datasets are described as follows.

—MBPP [7] contains 974 real-world programming problems that are constructed by crowd-
sourcing. Each problem contains a natural language requirement, a single Python function,
and three test cases.
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—MBJP [6] and MBJSP [6] both contain 966 crowd-sourced programming problems in Java
and JavaScript, respectively. Each problem consists of a natural language requirement, an
individual function, and three test cases.

4.2.2 Metrics. Following previous code generation studies [12, 13, 30, 51], we employ Pass@:
as our evaluation metric. Specifically, we generate : programs for each requirement. A requirement
is considered solved if any generated programs pass all test cases. We compute the percentage of
solved requirements in total requirements as Pass@: . In this article, : is set to 1, 3, and 5.

We notice that previous studies [15, 45] also use some match-based metrics (e.g., Bilingual
Evaluation Understudy (BLEU) [34]). These metrics are initially designed for natural language
generation and are poor in measuring the functionality of programs [12]. Thus, we omit them in
experiments.

4.3 Comparison Baselines
This article is to propose a new prompting technique for code generation. Thus, we select three
existing prompting techniques as baselines.

—Zero-shot prompting [12, 30] directly feeds the input requirement into LLMs. Then, it extracts
the code from LLMs’ outputs.

—Few-shot prompting [12] randomly selects several (3 in this article) <requirement, code> pairs
from the training data as examples and constructs a prompt, which is fed into an LLM. Then,
it extracts the code from LLMs’ outputs. The prompt of few-shot prompting is available in our
replication package [AceCoder].

—CoT prompting [48] is a variant of few-shot prompting. CoT prompting uses several (3 in this
article) <requirement, intermediate steps, code> triples as examples and constructs a prompt.
Based on the prompt, LLMs first generate a series of intermediate steps and then output the
code. The prompt of CoT prompting is available in our replication package [AceCoder].

AceCoder retrieves similar programs to assist LLMs in generating code. Some studies also
introduce information retrieval to augment code generation. We compare AceCoder to these
retrieval-based models.

—REDCODER [35] retrieves similar programs and fine-tunes a pre-trained model—PLBART [5]
to generate code based on the requirement and similar programs.

—Jigsaw [19] searches for similar programs from API documentation and insert them into the
prompts.

4.4 Base LLMs
We select three open-source LLMs as base models. The details of the base models are shown as
follows.

—GPT-3.5 [32] is a variant of gpt-3 [9] through the reinforcement learning with human
feedback (RLHF).The RLHF can improvemodels’ instruction-following capabilities and avoid
the generation of harmful or toxic content. In this article, we utilize the gpt-3.5-turbo-0301
version.

—CodeGeeX [51] is a multilingual LLM for source code with 13 billion parameters. CodeGeeX
is pre-trained with a large corpus of more than 20 programming languages (e.g., Python,
Java, and JavaScript). We download the model weight and run CodeGeeX following official
instructions.
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Table 2. The Results of AceCoder and Prompting Baselines on Three Datasets

Base model Prompting Technique MBPP MBJP MBJSP
Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5

GPT-3.5

Zero-shot prompting 50.47 58.20 61.40 51.32 62.07 65.52 48.28 55.81 57.24
CoT prompting 52.80 61.00 63.00 55.78 63.29 65.52 51.36 57.45 60.88

Few-shot prompting 52.20 59.24 61.92 53.81 62.71 64.33 50.11 56.74 59.12
AceCoder 57.82 64.74 66.83 57.36 68.50 70.73 54.38 61.75 63.42

Relative Improvement 8.3% 6.9% 7.6% 2.8% 8.2% 8% 5.9% 7.5% 4.2%

CodeGeeX-13B

Zero-shot prompting 5.20 13.80 19.40 4.46 11.97 18.26 0.20 0.20 0.41
CoT prompting 12.60 23.40 30.20 14.40 28.19 33.67 11.35 21.10 25.96

Few-shot prompting 20.40 30.60 36.00 16.63 26.17 34.48 11.16 19.88 25.56
AceCoder 26.74 36.43 41.13 28.38 36.79 41.54 21.03 31.44 36.04

Relative Improvement 31.1% 19% 14.2% 70.7% 40.6% 20.5% 88.4% 58.2% 31%

CodeGen-6B

Zero-shot prompting 10.40 19.40 24.40 14.81 25.76 31.44 8.72 19.67 22.92
CoT prompting 13.00 21.00 26.00 13.59 25.35 31.24 11.56 20.08 24.54

Few-shot prompting 14.60 24.00 30.20 18.25 30.02 34.68 9.94 19.88 23.12
AceCoder 22.83 34.58 40.16 22.45 34.27 40.96 16.45 27.31 32.16

Relative Improvement 56.14% 44.1% 33% 23% 14.2% 18.1% 65.5% 37.4% 39.1%

InCoder-6B

Zero-shot prompting 4.20 11.40 16.20 2.23 5.88 9.13 3.65 5.88 8.11
CoT prompting 3.99 10.65 15.31 1.83 4.46 7.10 1.22 2.03 4.67

Few-shot prompting 12.80 22.80 28.20 10.95 23.53 26.17 12.78 22.52 27.79
AceCoder 20.16 31.44 34.10 16.37 29.89 34.74 15.97 27.13 30.65

Relative Improvement 57.5% 37.9% 20.9% 49.5% 27% 32.7% 25% 20.5% 10.3%

The bold indicates important experimental results. The numbers in red denote AceCoder’s relative improvements
compared to the SOTA baseline—few-shot prompting.

—CodeGen [30] is a family of LLMs for source code that is pre-trained with extensive natural
language and code data. We select CodeGen-Multi-6.1B (CodeGen-6B) as a base model.

— InCoder [13] is a multilingual LLM for code generation. It is pre-trained with 216 GB of code
data. We use a version with 6.7 billion parameters (InCoder-6B) as a base model.

4.5 Implementation Details
Example Retrieval. For each dataset, the retrieval corpus is its training data. We exclude the ground
truths from the outputs of our retriever. We first retrieve top 20 similar programs and then use the
selector to select three examples. The hyper-parameters—= and _ are set to 4 and 0.1, respectively.
Both default values are determined based on an initial hyper-parameter search on the development
data. To ensure fairness, the number of examples in AceCoder and baselines is the same.

Prompt Construction. In experimental datasets, the retrieval corpus (i.e., training data) has been
equipped with test cases by data collector [6, 7]. Thus, the analyzer utilizes pre-defined rules to
extract test cases and transform retrieved programs into <requirement, test cases, code> triples.

Code Generation. Following previous studies [12, 13, 30], we use nucleus sampling [17] to decode
programs from LLMs. The temperature is 0.8 and the top-? is 0.95. The maximum generated lengths
are 400, 500, and 500, respectively. The sampling settings of baselines are the same as the ones of
AceCoder.

5 Results and Analyses
In the first research question, we evaluate the performance of AceCoder with respect to existing
prompting techniques.

RQ1: How does AceCoder perform compared to existing prompting techniques?
Setup. We apply AceCoder and three prompting baselines to three base models (Section 4.4).

Then, we use Pass@k to measure their performance on three benchmarks (Section 4.2).
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Table 3. The Comparison of Retrieval-Based Baselines and AceCoder

Approach MBPP MBJP MBJSP
Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5

REDCODER 3.37 6.21 9.74 4.46 7.51 9.94 4.87 10.34 12.78
Jigsaw 23.65 33.97 37.78 22.99 33.26 36.95 18.16 28.79 34.08

AceCoder 26.74 36.43 41.13 28.38 36.79 41.54 21.03 31.44 36.04

Relative Improvement 13.1% 7.2% 8.9% 23.4% 10.6% 12.4% 15.8% 9.2% 5.8%

The bold indicates important experimental results. The numbers in red denote AceCoder’s relative improvements
compared to the SOTA baseline—Jigsaw.

Results. The results on three benchmarks are shown in Table 2. The numbers in red denote
AceCoder’s relative improvements compared to the SOTA baseline—few-shot prompting.

Analyses. ¶ AceCoder performs better than baselines on three benchmarks. Compared to the
SOTA baseline—few-shot prompting, in terms of Pass@1, AceCoder outperforms it by up to
56.14% in MBPP, 70.7% in MBJP, and 88.4% in MBJSP. Pass@1 is a rigorous metric that is difficult
to improve. The significant improvements prove the superiority of AceCoder in code generation.
We attribute the improvements to our novel techniques, i.e., example retrieval and guided code
generation. The retrieved examples contain many relevant code elements teaching LLMs “how
to write.” Guided code generation asks LLMs to analyze requirements that tell LLMs “what to
write.” · AceCoder is effective in different LLMs and programming languages. AceCoder achieves
substantial improvements on general LLMs (e.g., GPT-3.5) and code LLMs (e.g., CodeGeeX). Besides,
AceCoder works well on LLMs with different sizes. Compared to few-shot prompting, in terms
of Pass@1, AceCoder improves CodeGeeX-13B by up to 88.4%, CodeGen-6B by up to 65.5%, and
InCoder-6B by up to 57.5%. In particular, we find that an LLM with AceCoder even outperforms
larger LLMs. For example, in the MBJSP, InCoder-6B with AceCoder outperforms CodeGeeX-13B
with few-shot prompting. It proves the potential of AceCoder. AceCoder is also language-agnostic
and is effective in multilingual code generation (i.e., Python, Java, and JavaScript).

Answer to RQ1: AceCoder outperforms existing prompting techniques on three benchmarks.
In terms of Pass@1, AceCoder outperforms the SOTA baseline by up to 56.4% in MBPP, 70.7%
in MBJP, and 88.4% in MBJSP. Besides, AceCoder is effective in LLMs with different sizes. It
improves CodeGeeX-13B by up to 88.4%, CodeGen-6B by up to 65.5%, and InCoder-6B by up to
57.5%. The significant improvements prove the effectiveness of AceCoder in code generation.

RQ2: How does AceCoder perform compared to retrieval-based models?
Setup. In this RQ, we compare AceCoder to two retrieval-based baselines, including REDCODER

[35] and Jigsaw [19]. Baselines and AceCoder use the same retrieval corpus. Because REDCODER
requires fine-tuning, we follow the official instructions and use the training data to train RED-
CODER.

Results. The results on three benchmarks are shown in Table 3. The numbers in red denote
AceCoder’s relative improvements compared to the SOTA baseline—Jiagsaw.

Analyses. ¶ AceCoder outperforms retrieval-based baselines in three benchmarks. Compared
to the SOTA baseline—Jigsaw, in terms of Pass@1, AceCoder outperforms it by up to 13.1% in
MBPP, 23.44% in MBJP, and 15.8% in MBJSP. Jigsaw also retrieves similar programs for making
prompts. The improvements show the effectiveness of our selector and analyzer. The selector
filters out redundant similar programs and further improves the quality of examples. The analyzer
constraints LLMs to first analyze requirements and then generate code. Besides, we notice that
REDCODER has poor accuracy in three benchmarks. This is because the training data is limited,
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Table 4. The Results of Human Evaluation

Approach Correctness Code smell Maintainability

Zero-shot prompting 0.3167 1.1033 1.2749
CoT prompting 0.6671 1.1405 1.4479
Few-shot prompting 0.9769 1.2148 1.5420
AceCoder 1.5802 (↑ 61.8%) 1.6241 (↑ 33.7%) 1.7544 (↑ 13.8%)

The bold indicates important experimental results. The values in parentheses are the
relative improvements compared to the SOTA baseline—few-shot prompting.

and fine-tuning easily leads to overfitting. It validates our motivation that introducing similar
programs by prompting is a more suitable approach to LLMs.

Answer to RQ2: AceCoder outperforms retrieval-based baselines. Specifically, it outperforms
the SOTA baseline—Jigsaw by up to 13.1% in MBPP, 23.44% in MBJP, and 15.8% in MBJSP.

RQ3: Do human developers prefer code generated by AceCoder?
Setup. The ultimate goal of code generation is to assist human developers in writing code. Thus,

we conduct a human evaluation to measure programs generated by AceCoder and baselines. We
follow the settings of human evaluation in previous studies [14, 23].

Metrics. We manually evaluate programs in three aspects:

—Correctness (whether the program satisfies the given requirement). 0 point: the program is
totally inconsistent with the requirement. 1 point: the program is implemented, but misses
some details. 2 points: the program is correctly implemented.

—Code Smell (whether the program contains bad code smell). 0 point: There are better solutions
in terms of performance. Or there is serious code smell. 1 point: Some details are not in place.
There is code smell of low severity. 2 points: No obviously better code in terms of performance
exists. If possible, resources are released accordingly. No obvious code smell.

—Maintainability (whether the implementation is standardized and has good readability). 0
point: The program does not follow a consistent specification, or there are many meaningless
names in variable naming, or there are certain repetitions and redundant codes. 1 point: The
program implementation meets certain specifications. But some variable names can be further
refined. 2 points: The program implementation is relatively standardized, the variable naming
is basically semantically straightforward, and the readability is better.

We explain the above aspects to evaluators through some examples. After discussing with
evaluators, we set the score of each aspect to an integer, ranging from 0 to 2 (from bad to good).

Sampling Strategy. We randomly select 200 testing samples from a benchmark—MBPP. Then,
we consider the CodeGen-6B as a base model and leverage four prompting techniques (i.e., three
baselines and our approach) to generate programs based on the 200 samples. In this way, we obtain
800 (200*4) generated programs for human evaluation.

We recruit 10 participants with 3–5 years of development experience to evaluate the generated
programs in the form of a questionnaire. The participants are developers from IT companies and
academics in universities. The 800 programs are divided into five groups, with each questionnaire
containing one group. The programs are randomly shuffled and anonymously reviewed by evalua-
tors. Two evaluators evaluate each group, and the final score is the average of the two evaluators’
scores. Evaluators are allowed to search the Internet for unfamiliar concepts. All evaluators obtain
adequate payments given their countries of residence.
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Table 5. Inter-Rater and Intra-Rater Reliability in Human Evaluation

Inter-Rater Reliability Intra-Rater Reliability

Correctness 0.89 0.96
Code Small 0.81 0.95
Maintainability 0.79 0.94

We use Cohen’s Kappa coefficients as the metrics. Cohen’s Kappa coefficients in all
metrics are greater than 0.75.

Table 6. The Results of Ablation Study

Retriever Selector Analyzer MBPP MBJP MBJSP
Pass@1 (%) Pass@3 Pass@5 Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5

20.40 30.60 36.00 16.63 26.17 34.48 11.16 19.88 25.56
24.00 (↑ 17.6%) 34.60 38.20 23.35 (↑ 40.4%) 33.67 37.22 18.66 (↑ 67.2%) 29.18 34.89
24.89 (↑ 22%) 35.02 39.14 25.03 (↑ 50.5%) 34.47 39.24 19.73 (↑ 76.8%) 30.16 35.34

26.74 (↑ 31.1%) 36.43 41.13 28.38 (↑ 70.7%) 36.79 41.54 21.03 (↑ 88.4%) 31.44 36.04

The bold indicates important experimental results. The values in parentheses are relative improvements compared to
few-shot promopting.

Results. The results of the human evaluation are shown in Table 4. The values in parentheses are
the relative improvements compared to the SOTA baseline—few-shot prompting. We use Cohen’s
Kappa coefficients to measure the inter-rater and intra-rater reliability. The results are shown in
Table 5. The Cohen’s Kappa coefficients on all metrics are greater than 0.75. The results demonstrate
that our human evaluation is valid.

Analyses. ¶ AceCoder is better than all baselines in three aspects. Specifically, our AceCoder
outperforms the SOTA baseline—few-shot prompting by 61.8% in correctness, 33.7% in code smell,
and 13.8% in maintainability. The improvements show that AceCoder has better usability and is
promising in practical applications. Besides, all the p-values are substantially smaller than 0.05,
which shows the improvements are statistically significant.

Answer to RQ3: Human evaluation shows that human developers prefer programs generated
by AceCoder. It outperforms the SOTA baseline by 61.8% in correctness, 33.7% in code smell,
and 13.8% in maintainability.

RQ4: What are the contributions of different modules in AceCoder?
Setup. AceCoder contains three modules, i.e., a retriever, a selector, and an analyzer. This RQ is

designed to analyze the contributions of three modules to the performance. We select CodeGeeX
as the base model and conduct an ablation study by gradually adding three modules.

Results. The results are shown in Table 6. and represent adding and removing corresponding
modules, respectively. Without three modules, the base model uses few-shot prompting to generate
code. After adding a retriever, the base model selects top-: similar programs as examples and
directly generates code. After adding a selector, the base model selects : examples from similar
programs and then generates code. After further introducing an analyzer, the base model uses
AceCoder to generate code.

Analyses. ¶ All modules are necessary for AceCoder to perform the best. After adding a retriever,
the performance of the base models is improved. In terms of Pass@1, the retriever brings a 17.6%
improvement in MBPP, a 40.4% improvement in MBJP, and a 67.2% improvement in MBJSP. It
validates our motivation that retrieved programs contain lots of useful information that benefits
code generation. After adding a selector, the performance of the base model is further improved.
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It shows that our selector can effectively filter out redundant programs in retrieved results and
improve the quality of examples. After further introducing an analyzer, the base model achieves
better results. In terms of Pass@1, the base model is improved by 31.1% in MBPP, 70.7% in MBJP, and
88.4% in MBJSP. It proves the effectiveness of guided code generation in analyzing requirements.

Answer to RQ4: Threemodules are essential for the performance of AceCoder.The performance
of CodeGeeX on three benchmarks is substantially improvement by gradually adding three
modules.

RQ5: What are the better designs for three modules in AceCoder?
Setup. As stated in Section 3.1, AceCoder contains three modules, i.e., a retriever, a selector, and

an analyzer. In this RQ, we explore different designs for three modules and validate the superiority
of our designs. We select CodeGeeX as the base model. The evaluation settings are shown as follows:

(1) A retriever takes the input requirement as a query and searches for similar programs from a
retrieval corpus. We design two choices for the retriever:

—Dense retriever. It uses a neural encoder to convert the requirements into vector representa-
tions. Then, it retrieves similar programs based on the similarity of vector representations. In
experiments, we use an off-the-shelf natural language representationmodel [38] as the encoder.

—Sparse retriever (AceCoder). As stated in Section 3.2, it uses the BM25 score as the retrieval
metric. BM25 score can measure the lexical-level similarity of two requirements.

(2) A selector aims to score similar programs and filter redundant programs. For the score
function in the selector (line 8 of Algorithm 1), we design two choices:

—BLEU [34]. It extracts overlapping =-grams between the input requirement and the similar
requirement. Then, it computes the precision of =-grams in the similar requirement.

—ROUGE-N [26] (AceCoder). It extracts overlapping =-grams between the input requirement
and the similar requirement. Then, it computes the recall of =-grams in the input requirement.

(3) An analyzer is to introduce preliminaries into examples. A preliminary is a special software
artifact that benefits the requirement understanding. For the preliminary, we design three choices:

—API sequence. APIs are important elements in code and reflect the functionality of the code.
Pre-designing APIs help LLMs to think about how to solve requirements. We use a program
analysis tool [4] to extract APIs from examples and view the API sequence as a preliminary
(e.g., open, numpy.array, write).

—Method signature. It contains input–output parameters and their types, which clearly indi-
cate the inputs and outputs of requirements. Thus, we consider the method signature as a
preliminary (e.g., def 5 ;>>A"8=(A: int, B: int, N: int)).

—Test cases (AceCoder). Test cases exactly define the requirement, including the input–output
format, edge cases, and functionality. We consider several test cases as the preliminary, such
as (“Python,”“o”) ---> 1); (“little,”“t”) ---> 2);.

Results and Analyses. The results are shown in Table 7. “w/” is the abbreviation of with. ¶ A
dense retriever is comparable to our retriever but has a lower efficiency. In Table 7, compared to
AceCoder, AceCoder with dense retriever has a slight drop in performances. This indicates that
code generation prefers lexically similar programs that contain a lot of reusable content. Similar
findings can be found in code completion work [27]. Besides, the dense retriever has a higher
complexity and is hard to apply to a large-scale retrieval corpus. · The BLEU selector prefers
shorter examples and is suboptimal. Compared to AceCoder, AceCoder with BLEU selector has
an obvious decrease in accuracy. We inspect some failed samples and find that the BLEU selector
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Table 7. The Performance of AceCoder with Different Designs

Approach MBPP MBJP MBJSP
Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5

AceCoder 26.74 36.43 41.13 28.38 36.79 41.54 21.03 31.44 36.04
w/ Dense retriever 26.63 36.42 41.10 28.16 36.55 41.32 20.88 31.27 35.94
w/ BLEU selector 25.61 35.71 40.74 27.86 35.91 40.77 20.15 30.42 35.47
w/ API analyzer 25.10 35.24 40.38 26.44 35.16 40.12 19.86 30.23 35.41
w/ signature analyzer 26.14 35.96 40.89 27.35 36.11 40.98 20.58 30.89 35.86

The bold indicates important experimental results. w, with.

Fig. 6. Some programs generated by AceCoder and baselines.

prefers shorter examples. This is because BLEU is the precision of =-gram in similar requirements.
The shorter the similar requirement, the higher the BLEU. It leads that the selector tends to select
short programs as examples and ignores some informative but long examples. ¸ Test cases are
more suitable for the preliminary than APIs and method signatures. We carefully inspect some
cases. First, many requirements do not require APIs or only involve a few trivial APIs (e.g., range,
split, and len). It causes that generated APIs bring limited benefits to code generation. Second, by
generating method signatures, LLMs are asked to consider the input–output format, which benefits
code generation. However, method signatures miss other necessary details, such as edge cases.
AceCoder considers test cases as the preliminary. Test cases are common in code files. Thus, it is
feasible for LLMs trainedwith extensive code data to generate plausible test cases.With the guidance
of test cases, LLMs can comprehensively understand requirements and determine related details
(e.g., input–output formats, boundary inputs, outliers), thus generating more correct programs.

Answer to RQ5: We explore the other four designs for AceCoder and compare them to our
designs. Results on three benchmarks show the superiority of our design.

6 Discussion
6.1 Why AceCoder Works
In this section, we discuss why AceCoder works through some real cases. Figure 6 shows some
programs generated by our AceCoder and baselines on the MBPP dataset. Based on these cases, we
analyze two reasons why AceCoder works.

¶ AceCoder considers similar programs as examples, which contain many relevant elements and
teach LLMs “how to write.” Figure 6(a) shows a real requirement and the corresponding test cases
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for evaluation from the MBPP dataset. Figure 6(b) shows a program generated by the few-shot
prompting. Few-shot prompting randomly selects programs as examples and generates a wrong
solution, i.e., removing all occurrences of the character. It shows that generating a correct program
from scratch is challenging.

AceCoder proposes to retrieve similar programs as examples. Figure 6(b) shows the top-1 similar
program. We can see that the similar program provides many reusable code elements (e.g., control
flows—for i in range(len(string)-1, -1, -1):). The similar code teache s models how to find a specific
character in a string. Figure 6(e) shows the correct program generated by AceCoder. AceCoder
learns a well-formed algorithm structure from the similar program and introduces details based on
the input requirement.

· AceCoder helps LLMs comprehensively understand requirements and know “what to write.”
AceCoder designs an analyzer to help LLMs understand requirements. Figure 6(d) shows a program
generated by AceCoder without an analyzer. The program looks well but fails in test cases (1) and
(2). This is because the LLMs do not comprehensively understand the input requirement and ignore
important boundary inputs. Figure 6(e) shows test cases and a program generated by our AceCoder.
After adding an analyzer, LLMs first reason test cases as a preliminary and then generate programs.
The generated test cases contain various boundary inputs and define the requirement exactly. LLMs
know “what to write” based on the test cases and further generate correct programs.

6.2 AceCoder vs. CoT Prompting
Our guided code generation is similar to CoT prompting. Both approaches ask LLMs to generate an
intermediate result and then output the final code. The intermediate result in CoT prompting is a
series of natural language steps describing how to write code step by step. In contrast, AceCoder
leverages some software artifacts (e.g., test cases) as the intermediate result.

We argue that our guided code generation is superior to the CoT in code generation. Table 2
shows the comparison results between AceCoder and CoT prompting. CoT prompting achieves
slight improvements over few-shot prompting and is even worse than zero-shot prompting. We
inspect some failed samples and summarize the main reason. We find that CoTs describe how
to write code in a series of steps almost at the same level as code. The LLMs for source code are
mainly pre-trained with code data and are relatively weak in natural language generation. The
generated CoTs often contain ambiguities or errors and negatively affect the subsequent code
generation. Similar findings can be found in the original article of CoT prompting [48]. Compared
to CoT prompting, AceCoder uses a software artifact (i.e., test cases) as intermediate preliminaries.
Compared to natural languages, test cases are more suitable to clarify requirements and contain
fewer ambiguities. Besides, test cases are common in real-world code files, and LLMs have abilities
to generate plausible test cases. Thus, AceCoder is different from CoT prompting and is more
promising than CoT prompting in code generation.

6.3 AceCoder vs. Rank Techniques
Some recent studies [11, 18] propose rank techniques to improve the performance of LLMs on code
generation. Given a requirement, they first sample many programs from LLMs and then use test
cases or neural networks to rerank sampled programs.

In this article, we do not directly compare our approach to rank techniques. The reason is that
AceCoder and rank techniques have different focuses, and they are complementary. Our work is a
new prompting technique that improves the accuracy of LLMs in code generation. Rank techniques
do not care about LLMs and aim to select the best one from LLMs’ multiple outputs. In practice,
users can use AceCoder to generate many programs and then use rank techniques to pick a final
output. Thus, we omit them in experiments.
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Fig. 7. (a) A testing sample in MBPP and (b) its corresponding refactored version in Refactor-MBPP.

6.4 Threats to Validity
There are three main threats to the validity of our work.

The Impact of Retrieved Programs. AceCoder relies on the quality of retrieved programs. Intu-
itively, when the retrieved code is less relevant to the target code, the performance of AceCoder
may suffer. To address this threat, we have three thoughts.

¶ It is feasible to construct a reliable retrieval corpus. A large-scale study on 13.2 million real-
world code files found the proportion of reused code is up to 80% [29]. Besides, many public code
generation datasets (i.e., the training data) provide well-formed nl-code pairs, e.g., AixBench-L
(190,000 pairs) [23], CodeContest [25] (13,328 pairs), and APPS [16] (5,000 pairs). Therefore, we
believe that it is quite possible to retrieve similar programs in real development scenarios.

· AceCoder brings substantial improvements with a few nl-code pairs. In our experiments,
the retrieval corpus (i.e., training data) only contains 384 nl-code pairs. Experiments show that
AceCoder outperforms the SOTA baseline by up to 56.4% in MBPP, 70.7% in MBJP, and 88.4% in
MBJSP. The results demonstrate that AceCoder works with only a few nl-code pairs.

¸ The performance of AceCoder may degrade when faced with rare software libraries. When
the requirements involve rare third-party libraries, it may be difficult to retrieve relevant programs.
In this scenario, AceCoder may degrade to few-shot prompting (i.e., randomly selecting examples)
at worst. However, in most cases, AceCoder is better than the existing approaches. We leave this
limitation to future work.

Data Leakage. Theoretically, all open-source code projects may be included in the training data
for LLMs. Consequently, there is a risk of data leakage where several samples in experimental
benchmarks appear in the training data. Because most LLMs’ training data is unavailable, we can
not determine which samples are leaked. To address this threat, we refactor the experimental
benchmarks and evaluate our AceCoder on new benchmarks. The details of refactoring and
evaluation are described as follows.

¶ Refactoring Benchmarks. Benchmarks provide natural languages and function signatures
as inputs, and test cases for evaluation. First, we hire five annotators to rewrite all requirements
without changing their semantics. These annotators have 3–5 years of development experience.
Then, we ask annotators to refactor function and argument names in signatures. Finally, we design
heuristic rules to update the functions under test in test cases automatically. In this way, we refactor
all samples in the MBPP and obtain a new benchmark—Refactor-MBPP. Figure 7 shows an original
sample in MBPP and its corresponding refactored version in Refactor-MBPP. Since refactoring is
time-consuming and laborious, we leave other benchmarks to future work.

· Evaluating AceCoder on Refactor-MBPP. We select GPT-3.5 as the base model and evaluate
different approaches on Refactor-MBPP. The results are shown in Table 8. We can see that our
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Table 8. The Results of AceCoder and Prompting Baselines on MBPP and Refactor-MBPP Datasets

Base Model Prompting Technique MBPP Refactor-MBPP
Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5

GPT-3.5

Zero-shot prompting 50.47 58.20 61.40 46.32 55.12 59.13
Few-shot prompting 52.20 59.24 61.92 47.92 57.67 59.46

CoT prompting 52.80 61.00 63.00 48.77 60.25 62.34
AceCoder 57.82 64.74 66.83 55.73 63.42 65.14

Relative Improvement 8.3% 6.9% 7.6% 14.3% 5.3% 4.5%

The bold and red indicate important experimental results.

AceCoder substantially outperforms all baselines in Refactor-MBPP. The results determine that
data leakage has a slight impact on our experiments.

The Generalizability of Experimental Results. To mitigate this threat, we carefully select the
experimental datasets, metrics, and baselines. Following previous studies [6, 11], we pick three
representative code generation benchmarks. They are collected from real-world software projects
and cover three popular programming languages (i.e., Python, Java, and JavaScript). We select
a widely used metric for evaluation metrics—Pass@: (: = 1, 3, 5). Pass@: is an execution-based
metric that utilizes test cases to check the correctness of programs. We select existing prompting
techniques and retrieval-based models as comparison baselines. We pick three representative LLMs
as base models [12, 13, 30, 51], which scale from 6B to 13B. We apply AceCoder and baselines to
base models and evaluate their performance on three datasets using Pass@k. We run each approach
three times to ensure fairness and report the average results.

7 Related Work
LLMs for code generation are large-scale neural networks pre-trained on a large corpus of natural
language and programming language. With the development of LLM research, current Code LLMs
can be divided into two categories: standard language models and instruction-tuned models.

Standard Language Models are pre-trained on the raw corpus with the next-token prediction.
They can continually complete the given context, which makes them useful in tasks like code
completion and code generation. With the success of GPT series [9, 36, 37] in Natural Language
Processing, OpenAI adapts similar ideas into the domain of source code and fine-tunes GPT models
on code to produce closed-source Codex [12]. There are multiple open-source attempts to replicate
its success, e.g., CodeParrot [1], CodeGen [30], CodeGeeX [51], InCoder [13], StarCoder [24] and
CodeT5+ [44].

Instruction-Tuned Models are models fine-tuned using instruction tuning [47]. Instruction tuning
helps models follow users’ instructions. OpenAI’s ChatGPT [31] is trained by RLHF [33], making it
capable of both natural language tasks and programming tasks. Due to its enormous influence and
closed-source, many researchers try to create open-source ChatGPT alternatives using instruction
tuning and its variants. Alpaca [40] is LLaMA [41] fine-tuned using self-instruct [43] and ChatGPT
feedback. Code Alpaca [10] is LLaMA fine-tuned using self-instruct and ChatGPT feedback with
more programming-focused instructions. WizardCoder [28] is StarCoder [24] fine-tuned using Evol-
Instruct [49] and ChatGPT feedback with Code Alpaca’s dataset as seed dataset. InstructCodeT5+
[44] is CodeT5+ [44] fine-tuned on Code Alpaca’s dataset.

Prompting Techniques. LLMs are too large to fine-tune, so researchers need to find a new way to
adapt the LLMs to the downstream tasks. Prompting techniques are a popular approach to leverage
LLMs to generate code by inputting a special prompt.
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Fig. 8. The comparison between AceCoder and existing prompting techniques and retrieval-augmented
approaches.

Early, researchers proposed zero-shot prompting and few-shot prompting. Zero-shot prompting
concatenates a task instruction (e.g., please generate a program based on the requirement)
and a requirement together to make the prompt. Based on the zero-shot prompting, few-shot
prompting further adds several 〈 requirement, code 〉 pairs to the prompts so that LLMs can learn
code generation from given examples. CoT prompting [48] is a recently proposed prompting
technique. CoT asks LLMs first to generate CoTs (i.e., intermediate natural language reasoning
steps) and then output the final code. It allows LLMs to design a solving process that leads to the
code. CoT has achieved the SOTA results in natural language generation and sparked lots of follow-
up research, such as self-consistency prompting [42], least-to-most prompting [52]. However, these
prompting techniques are designed for natural language generation and bring slight improvements
in code generation.

Differences between AceCoder and existing prompting techniques. As shown in Figure 8,
AceCoder proposes two novel designs:

—Example Retrieval. Previous approaches typically randomly select examples from the training
data, which probably are irrelevant to current requirements. AceCoder retrieves similar
programs as examples. Figure 2(d) shows some similar programs used by AceCoder. Similar
programs contain many relevant elements (e.g., APIs—re.search, algorithms), which can be
reused and beneficial to code generation.

—Guided Code Generation. Zero-shot and few-shot prompting ask LLMs to output the code
directly. CoT prompting asks LLMs to generate intermediate natural language reasoning
steps and output the code. In comparison, Guided code generation asks LLMs to analyze
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the requirement (i.e., generating an intermediate preliminary) and then generate the code.
A preliminary is a specific software artifact (e.g., test cases, APIs) to clarify the requirement.
Figure 1(d) shows the preliminary (i.e., test cases) generated by AceCoder. The test cases
cover multiple requirement scenarios (e.g., boundary inputs) and benefit the following code
implementation.

Differences between AceCoder and existing retrieval-augmented approaches. REDCODER
[35] and Jigsaw [19] both are retrieval-augmented code generation baselines. Compared to them,
AceCoder contains two novel mechanisms:

—An Example Selector. REDCODER and Jigsaw simply take top- retrieved programs as inputs.
As stated in Section 2, top- retrieved programs may contain redundant contents and ignore
more informative programs. Thus, we propose a selector to filter out redundant programs and
maximize the information of retrieved results.

—Guided Code Generation. REDCODER and Jigsaw ask models to output the final code directly.
In comparison, our proposed code generation teaches models to generate an intermediate
preliminary and then generate the code. As discussed above, guided code generation benefits
the requirement understanding and thus improves the accuracy of code generation.

8 Conclusion and Future Work
We propose a new prompting technique named AceCoder to improve the performance of LLMs
on code generation. AceCoder designs two novel techniques (i.e., guided code generation and
example retrieval) to help LLMs understand requirements and implement programs. Guided code
generation asks LLMs to output an intermediate preliminary (e.g., test cases) before generating
programs. The preliminary helps LLMs understand requirements and guides the next code gen-
eration. Example retrieval selects similar programs as examples, which provide many reusable
elements for program implementation. We apply AceCoder to three LLMs and conduct experi-
ments on three benchmarks. Results show that AceCoder significantly outperforms the SOTA
baselines.

Based on AceCoder, researchers can explore the following directions in future work:
Semantic Example Retrieval. Our example retrieval uses BM24 as the retrieval metric. Though

BM25 is widely used in code search, it focuses on the requirement text and ignores the require-
ment semantics. Two requirements that are very similar intext may be very different in semantics,
such as Upload an image to a server and Download an image from a server. This limita-
tion causes that retrieved programs contain little information for code generation and bring few
improvements.Therefore, it is necessary to exploremore advanced retrieval techniques that consider
both text and semantics.

Non-Standalone Code Generation. Our experimental benchmarks only comprise standalone pro-
grams. Recent studies [20, 21] release benchmarks containing non-standalone programs. The
performance of AceCoder on non-standalone code is unclear. A straightforward approach to ad-
dressing this problem is to extend our example retrieval. Besides similar programs, we also retrieve
programs that may be invoked in target functions. Then, both types of programs are inserted into
prompts and inputted to LLMs. We will explore this direction in future work.

Long Code Generation. In this article, we focus on function-level code generation and omit the
longer code, e.g., a class. Theoretically, AceCoder can be used to generate the longer code. A
challenge is how to design the corresponding requirements. For example, a class typically consists
of multiple functions and fields. How to clearly express the elements in the target class and their
roles is a future direction.
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In the future, we will explore how to improve the usability of LLMs in code generation. For
example, how to teach LLMs to use unseen frameworks without re-training.
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